## TEL

2023 EUVL Workshop & Supplier Showcase /June 3-7, 2023



## Advanced Resist Patterning Processes for High-NA EUV Lithography (P44, Invited)

#### June 6, 2023

Seiji Nagahara<sup>1</sup>, Cong Que Dinh<sup>2</sup>, Arame Thiam<sup>3</sup>, Arnaud Dauendorffer<sup>2</sup>, Yuhei Kuwahara<sup>2</sup>, Soichiro Okada<sup>2</sup>, Shinichiro Kawakami<sup>2</sup>, Seiji Fujimoto<sup>2</sup>, Makoto Muramatsu<sup>2</sup>, Satoru Shimura<sup>2</sup>, Yannick Feurprier<sup>3</sup>, Rajesh Ramaneti<sup>3</sup>, Atsushi Tsuboi<sup>1</sup>, Kathleen Nafus<sup>4</sup>, Eric Liu<sup>5</sup>, Lior Huli<sup>5</sup>, Kanzo Kato<sup>5</sup>, Steven Grzeskowiak<sup>5</sup>

Tokyo Electron Ltd.
 Tokyo Electron Kyushu Ltd.
 Tokyo Electron Europe Ltd.
 Tokyo Electron America, Inc.
 TEL Technology Center, America, LLC

#### Contents

- 1. Introduction: High NA EUV Lithography Patterning Requirements
- 2. Patterning Innovation by New Development Method (ESPERT<sup>™</sup>)
- 3. Summary

Wafer Resist Coater/Developer



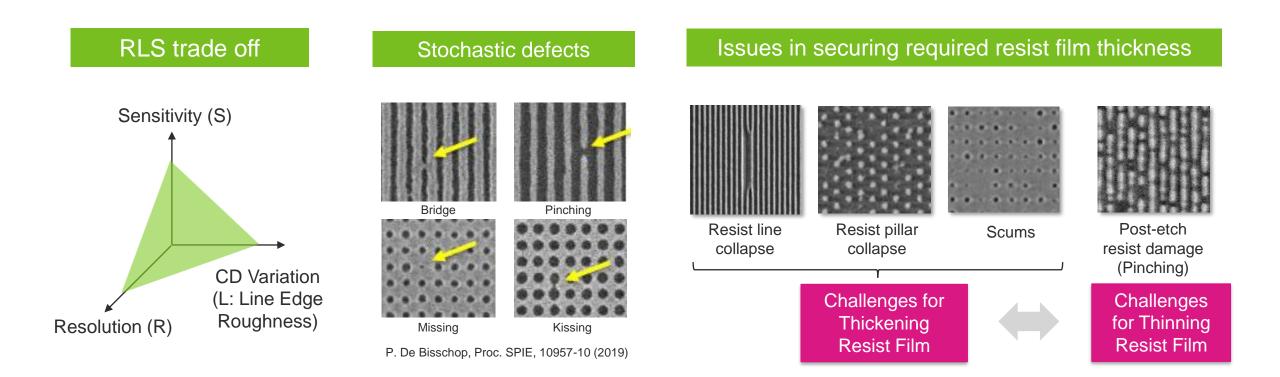


#### Introduction: High NA EUV Lithography Patterning Requirements



#### EUV Lithography Technology Roadmap in Logic Devices

Source: TEL estimates


| Year of HVM<br>(20k/month)   | 2022~23 | 2024~2025  | 2027~28               | 2029                     | 2031                      | 2033                      | 2035                                                                                                                             |
|------------------------------|---------|------------|-----------------------|--------------------------|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Node                         | 3 nm    | 2 nm       | 14A                   | 10A                      | 7A                        | 5A                        | 3A                                                                                                                               |
| Device                       | 2~1 Fin | GAA NS     | Forksheet             | CFET                     | 2 <sup>nd</sup> Gen. CFET | 3 <sup>rd</sup> Gen. CFET | IL/HK<br>CONTRACTOR IL/HK<br>2D material: TMDC<br>MoS <sub>2</sub> , WS <sub>2</sub> , MoSe <sub>2</sub> , WSe <sub>2</sub> etc. |
| Poly pitch (PP)              | 45      | 45         | 42                    | 42                       | 39                        | 36                        | 27                                                                                                                               |
| Min. Metal Pitch [nm]        | 22      | 20         | 18                    | 16                       | 12                        | 12                        | 12                                                                                                                               |
| EUV patterning<br>technology | EUV MP  | EUV MP     | EUV MP<br>High NA EUV | EUV MP<br>High NA EUV MF | EUV MP<br>PHigh NA EUV MP | EUV MP<br>High NA EUV MP  | EUV MP<br>P <b>High NA EUV MP</b>                                                                                                |
| Resist                       | CAR     | CAR (+MOR) | CAR (+MOR)            | CAR + MOR                | CAR + MOR                 | CAR + MOR                 | CAR+MOR                                                                                                                          |

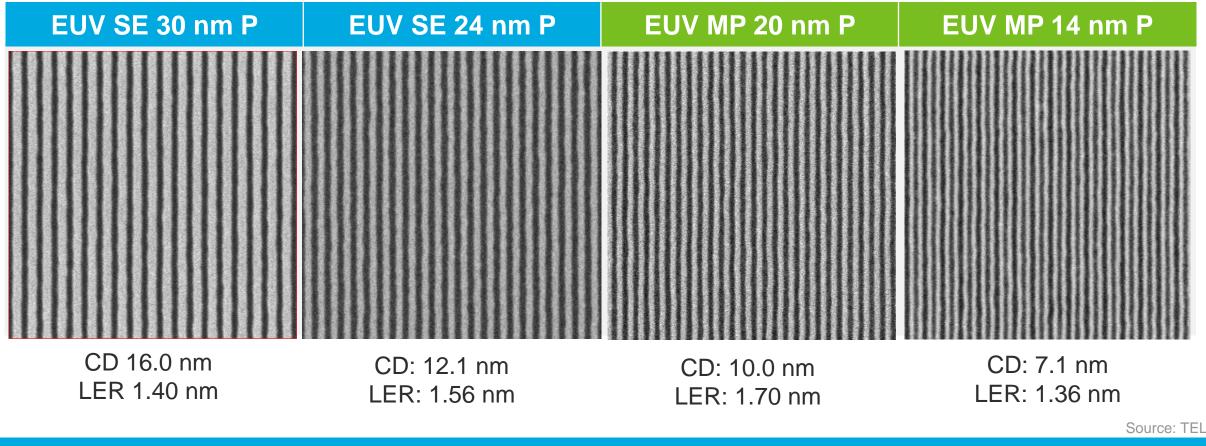
CAR: Chemically Amplified Resist, MOR: Metal Oxide Resist, MP: Multi-patterning

With progress in technology nodes, minimum feature size reduction continues. Today in this talk, high-NA EUV lithography related process technologies will be highlighted



### Challenges in High NA EUV Lithography Processes



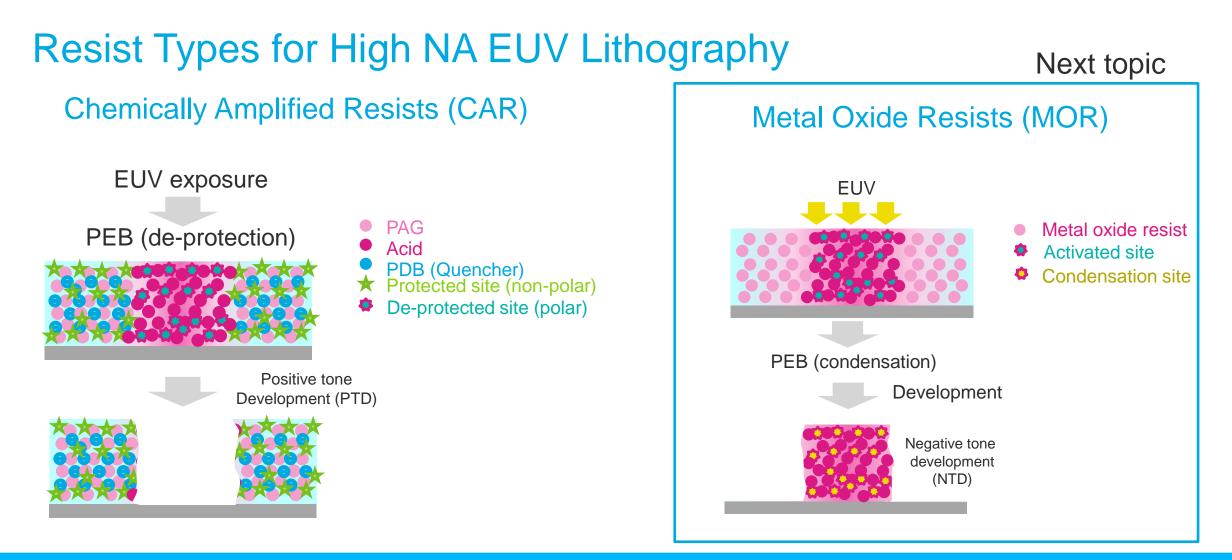

Resist sensitization and roughness reduction are the keys for reducing CoO of EUV lithography process Reduction of stochastic defects and reducing resist pattern collapse/ scums and post etch pinching are important challenges for high NA EUV fine patterning



#### Raley, et al., SPIE ALP2022

#### EUV Patterning Performance by NA0.33 EUV Lithography

SE: Single Exposure /MP: Multi Patterning



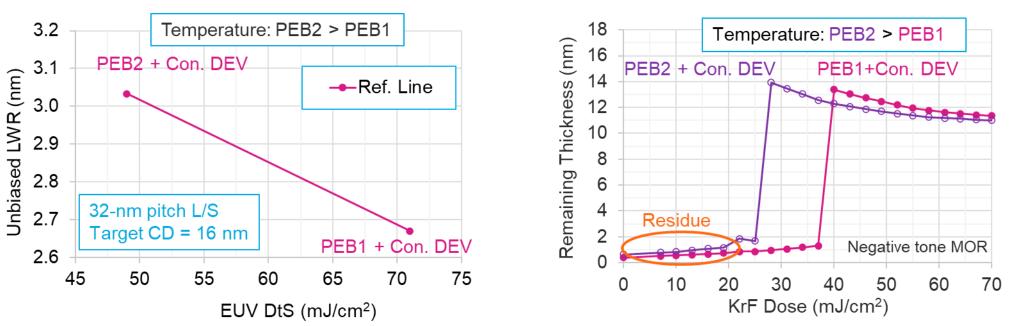

TEL is actively working on advancement in scaling for high NA EUV lithography. In this talk we will update the improvements in results focusing on single patterning extension



## Patterning Innovation by New Development Method (ESPERT<sup>TM</sup>)






CAR: Established current main stream resist, metal-free MOR: High EUV absorption, less image blur for improved RLS



#### Challenge: Dose-Roughness/Residue Trade-off Relationship for MOR

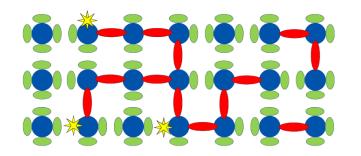
Dinh, et al., SPIE ALP2023

**Contrast Curves** 



#### Roughness-Sensitivity

Higher PEB temperature: Higher resist sensitivity, but higher roughness and more scums Lower PEB temperature: Lower resist sensitivity, with better roughness and less scums


Tokyo Electron Ltd. / June, 2023 / Program Number P44 / 2023 EUVL Workshop & Supplier Showcase



9

#### **RLS Improvement by Stochastics Understanding in MOR**

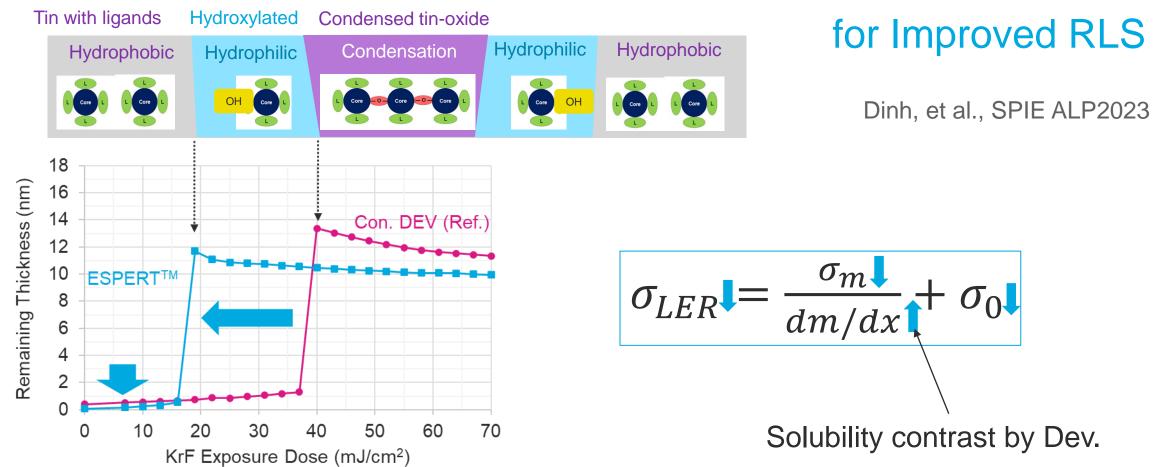
Dinh, et al., SPIE ALP2023



The standard deviation of the edge positions  $\sigma_{\text{LER}}$ :

$$\sigma_{LER} = \frac{\sigma_m}{dm/dx} + \sigma_0$$

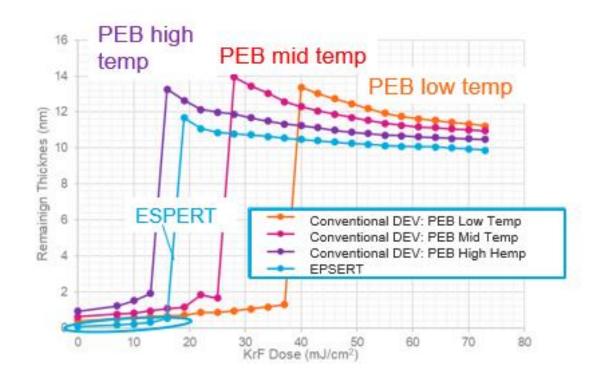
Derived from the simple model of line-edge roughness for CAR, C. Mack, Future Fab International, Vol. 34 (2010)


- $\sigma_m$ : The standard deviation in concentration of resist dissolution inhibition (polarity change/Mw change)
- *dm/dx*: The gradient of resist dissolution inhibition
- $\sigma_0$ : The standard deviation due to finite size of the condensed molecule at the edge

To have a lower CD variation ( $\sigma_{LER}$ ), it is necessary to:

- reduce  $\sigma_{\rm m}$  (Mainly chemical stochastics)
- increase *dm/dx* (Chemical contrast, descum)
- reduce  $\sigma_0$  (Molecular size)



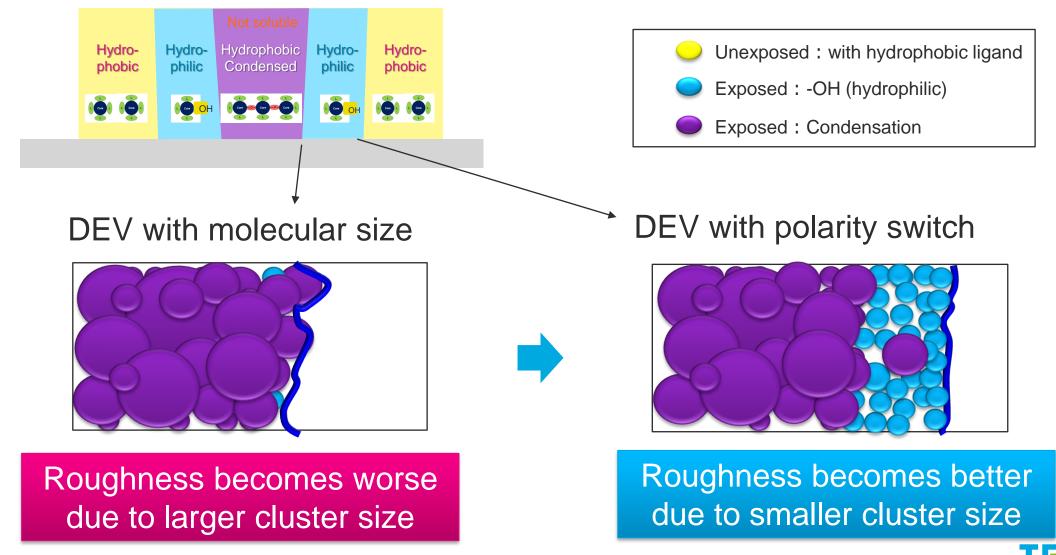

#### Solution: Enhanced Sensitivity develoPER Technology, ESPERT<sup>TM</sup>



ESPERT<sup>TM</sup> develops MOR by the outer edge of polarity switching  $\rightarrow$  Lowers  $\sigma_m$ ,  $\sigma_0$ ESPERT<sup>TM</sup> can remove the scums effectively at lower exposure dose area  $\rightarrow$  Increases dm/dx

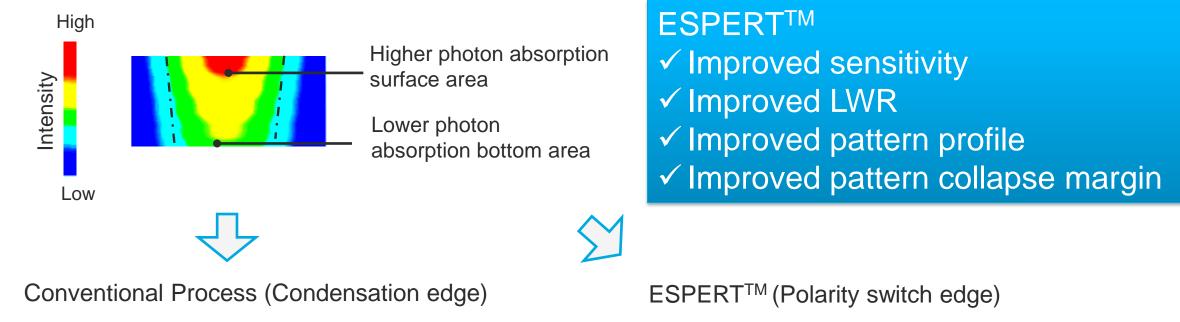


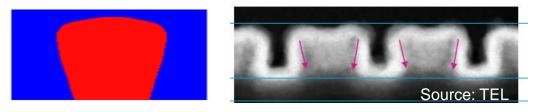
#### The Advantages of ESPERT<sup>™</sup> vs. Conventional Development



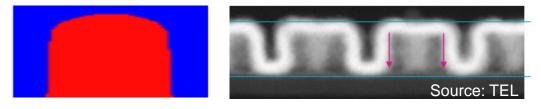

Dinh, et al., SPIE ALP2023

ESPERT<sup>™</sup> gives higher sensitivity combined with higher scum removal leading to a higher development contrast for better roughness





## Resist Roughness and Sensitivity Improvement by ESPERT<sup>TM</sup>



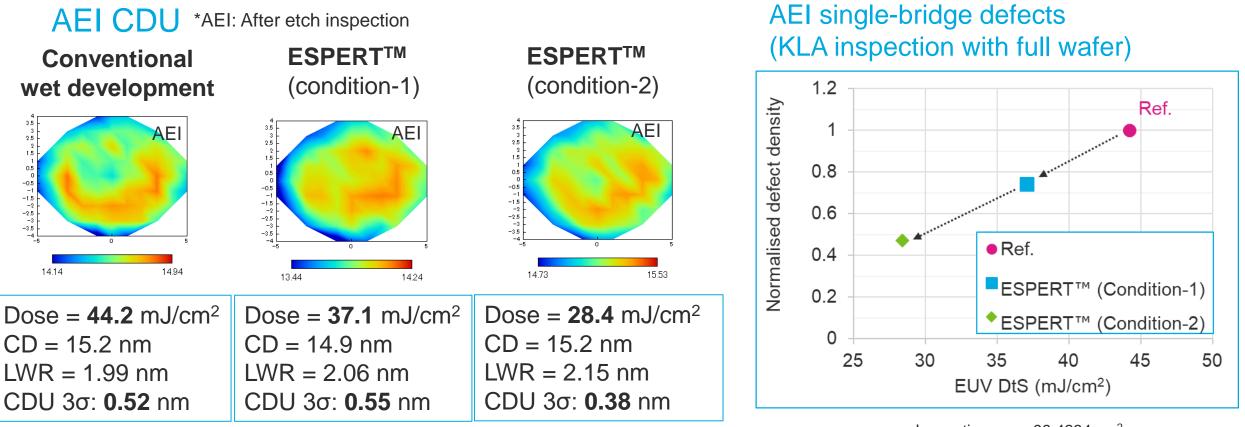

## Resist Profile Advantage by ESPERT<sup>™</sup> Enhanced Sensitivity developer Technology<sup>™</sup>

#### Latent image in a MOR





Reverse tapered shape




Vertical shape



Dinh, et al., SPIE ALP2023

## Pitch 32 nm L/S ESPERT<sup>™</sup> Breaks Dose-Defect Trade-off (NA0.33)

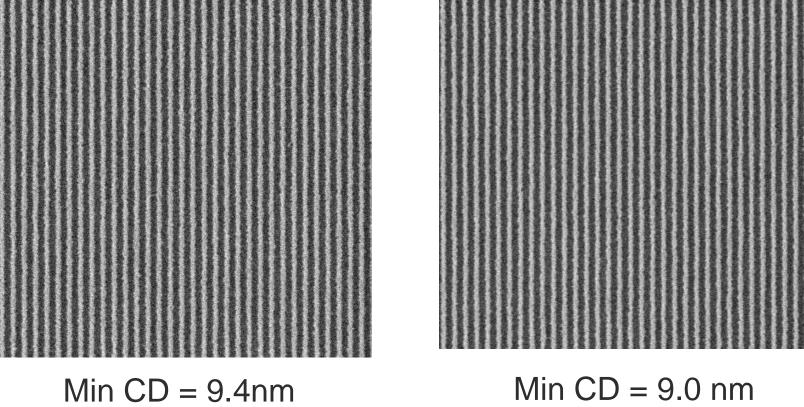


Inspection area: 98.4234 cm<sup>2</sup>

ESPERT<sup>TM</sup> Condition-2 improved the EUV sensitivity about 36% (from 44.2 mJ/cm<sup>2</sup> to 28.4 mJ/cm<sup>2</sup>), while single-bridge defects was reduced by a factor of 2.1 and global CDU is improved.



## Pitch 24 nm ADI L/S Performance Using ESPERT<sup>TM</sup> (NA0.33)


| ADI P24LS 1:1                                                                                 | Conventional wet dev | ESPERT <sup>™</sup> Condition 3 | ESPERT <sup>™</sup> Condition 4 |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------|---------------------------------|---------------------------------|--|--|--|
| Top-down SEM<br>Dipole<br>20 nm<br>MOR<br>Middle Layer<br>Underlayer<br>Oxide<br>TiN<br>Oxide |                      |                                 |                                 |  |  |  |
| Dose (mJ/cm <sup>2</sup> )                                                                    | 54                   | 39                              | 38                              |  |  |  |
| uLWR/LER (nm)                                                                                 | 3 / 2.3              | 3.2 /2.4                        | 3.2 /2.4                        |  |  |  |
| FFL* (nm)                                                                                     | 2 nm (CD10 - 12 nm)  | 2.7 nm (CD 10-12.7 nm)          | 3 nm (CD 10.0-13.0 nm)          |  |  |  |
| Smallest CD (nm)                                                                              | 9.4                  | 9.0                             | 9.6                             |  |  |  |
| *FFL: Failure Free Latitude by SEM images                                                     |                      |                                 |                                 |  |  |  |

30% dose reduction with ESPERT<sup>™</sup> obtained at comparable LER ADI failure free latitude can be improved by ESPERT<sup>TM</sup> thanks to better scum removal

Tokyo Electron Ltd. / June, 2023 / Program Number P44 / 2023 EUVL Workshop & Supplier Showcase

16

# Pitch 24 nm ADI L/S Pattern Collapse Prevention Using ESPERT™ Conventional Wet Dev. ESPERT™ Condition 3



ESPERT<sup>™</sup> has reasonable pattern collapse margin till 9 nm for target CD of 12 nm



#### Pitch 24 nm AEI L/S Performance Using ESPERT<sup>™</sup> (NA0.33)

| AEI P24LS 1:1                         | Conventional wet dev | ESPERT <sup>™</sup> Condition 3 | ESPERT <sup>™</sup> Condition 4 |
|---------------------------------------|----------------------|---------------------------------|---------------------------------|
| Top-down SEM<br>Oxide<br>TiN<br>Oxide |                      |                                 |                                 |
| Dose (mJ/cm <sup>2</sup> )            | 53                   | 41                              | 42.5                            |
| uLWR/LER (nm)                         | 2.1 / 1.6            | 2.0 / 1.6                       | 2.0 / 1.6                       |
| FFL* (nm)                             | 2 nm (CD10 - 12 nm)  | 3.4 (CD 11.4-13.8 nm)           | >3.8 (CD 11-14.8 nm)            |

\*FFL: Failure Free Latitude by SEM images

#### ~20% dose reduction at AEI with ESPERT<sup>™</sup> obtained at comparable LER ADI failure free latitude can be improved by ESPERT<sup>™</sup> thanks to better scum removal



#### Kato, et al., SPIE ALP2023

#### ESPERT<sup>™</sup> AEI Performance at L/S 23 nm Pitch (NA0.33)

\*AEI = After Etching Inspection

Experimental conditions

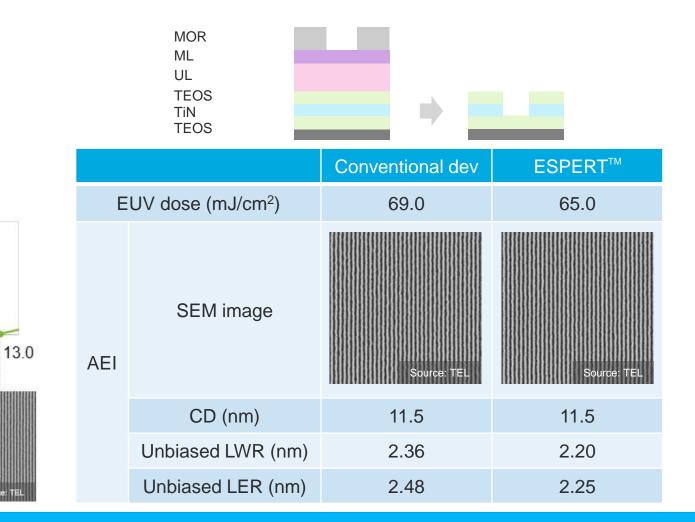
Normalized defect

counts

10.0

10.5

- Patterns: 23 nm pitch 1:1 LS
- Inspection step: AEI (Under optimization)


--- Conventional dev

11.5

AEI CD (nm)

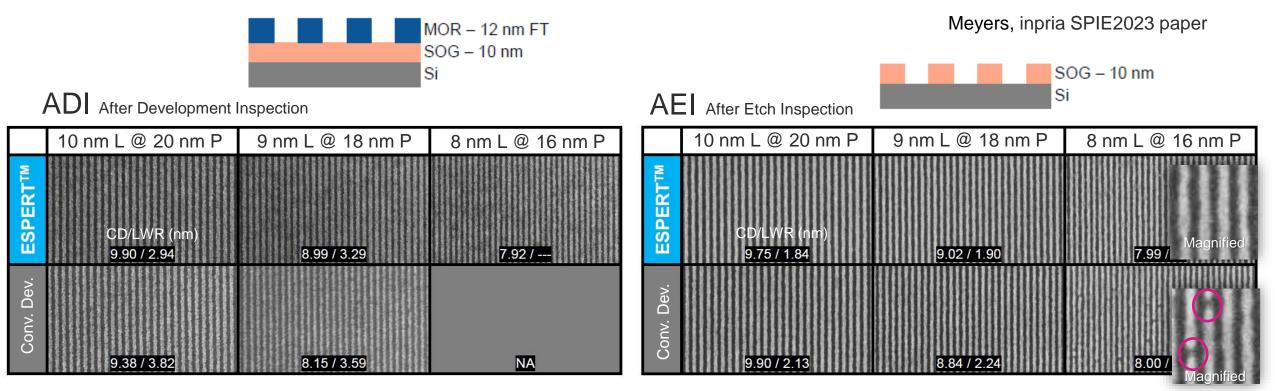
Line breaks (Under optimization)

11.0



ESPERT<sup>™</sup> improved DtS, roughness and defect cliff at AEI L/S 23 nm pitch

→ ESPERT<sup>™</sup>


12.5

Target 11.5 nm ± 10%

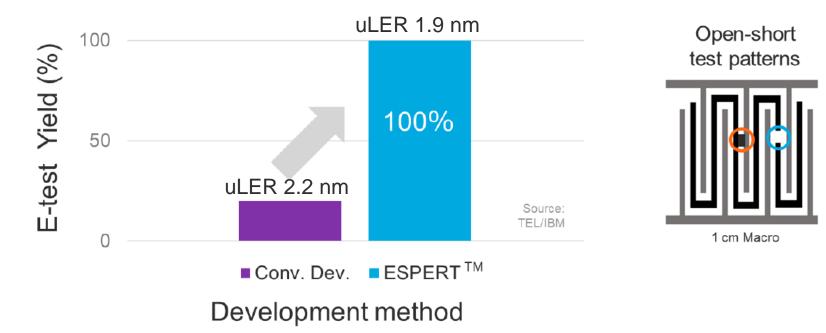
12.0



## High-NA Exposure: Pitch 20~16 nm L/S by ESPERT<sup>™</sup> (BMET NA0.5)



ESPERT<sup>TM</sup> Dose ~65 mJ/cm<sup>2</sup> POR Reference Dose 88 mJ/cm<sup>2</sup>


ESPERT AEI LWR 1.8~1.9 nm POR Reference Dev. 2.1~2.3 nm

ESPERT<sup>™</sup> reduces dose by ~24% and LWR by 15~20% lower for fine pitch patterns



#### Electrical Yield Study for 28 nm L/S Patterns

#### Huli, et al., SPIE ALP2023



#### 28 nm Pitch L/S Open Short Pattern E-Test Yield

Electrical Yield significant increase with ESPERT<sup>™</sup> process was observed with 10% dose reduction compared to reference wet process



#### Summary



#### Summary

- For high NA EUV generation, patterning challenges become more and more significant
- New development method called ESPERT<sup>TM</sup> was confirmed to be effective for improving Metal Oxide Resist (MOR) fine patterning performance by
  - Improved RLS (high resolution, better roughness, better EUV sensitivity)
  - less defects (less pattern collapse, less pinching, less bridges with less scums)
  - better resist profile
  - better global CDU
- The advantage of ESPERT is explained by showing improved resist dissolution contrast and chemical stochastics reduction model by selecting proper development interface



#### Acknowledgements

- The authors would like to thank
  - Chemical partners (Inpria)
  - imec
  - IBM
  - The Center for X-Ray Optics (CXRO), Laurence Berkeley National Laboratory
  - TEL EUV team members



#### References

- Cong Que Dinh, Seiji Nagahara, Yuhei Kuwahara, Arnaud Dauendorffer, Soichiro Okada, Seiji Fujimoto, Shinichiro Kawakami, Satoru Shimura, Makoto Muramatsu, Kayoko Cho, Xiang Liu, Kathleen Nafus, Michael Carcasi, Ankur Agarwal, Mark Somervell, Lior Huli, Kanzo Kato, Michael Kocsis, Peter De Schepper, Stephen Meyers, Lauren McQuade, Kazuki Kasahara, Jara Garcia Santaclara, Rik Hoefnagels, Chris Anderson, Patrick Naulleau, "<u>Advanced</u> <u>development methods for high-NA EUV lithography</u>", SPIE Advanced Lithography + Patterning, Paper 12498-4 (2023).
- Seiji Nagahara, Arnaud Dauendorffer, Arame Thiam, Xiang Liu, Yuhei Kuwahara, Cong Que Dinh, Soichiro Okada, Shinichiro Kawakami, Hisashi Genjima, Noriaki Nagamine, Makoto Muramatsu, Satoru Shimura, Atsushi Tsuboi, Kathleen Nafus, Yannick Feurprier, Marc Demand, Rajesh Ramaneti, Philippe Foubert, Danilo De Simone, Geert Vendenberghe, "<u>Recent advances in EUV patterning in preparation towards high-NA EUV</u>", SPIE Advanced Lithography + Patterning, Paper 12498-51(2023)
- Kanzo Kato, Lior Huli, Nathan Antonovich, David Hetzer, Steven Grzeskowiak, Eric Liu, Akiteru Ko, Satoru Shimura, Shinichiro Kawakami, Takahiro Kitano, Seiji Nagahara, Luciana Meli, Indira Seshadri, Martin Burkhardt, Karen Petrillo, "Coater/developer-based techniques to achieve tight pitches towards high NA EUV", SPIE Advanced Lithography + Patterning, Paper 12498-80 (2023)
- Lior Huli, Kanzo Kato, Steven Gueci, Nathan Antonovich, Steven Grzeskowiak, Dave Hetzer, Eric Liu, Alexandra Krawicz, Satoru Shimura, Shinichiro Kawakami, Soichiro Okada, Karen Petrillo, Luciana Meli, Nicholas Latham, Yasiel Cabrera, Belle Antonovich, "<u>Optimization of spin-on metal oxide resist</u> performance via new development techniques on sub 30nm pitch patterning", SPIE Advanced Lithography + Patterning, Paper 12498-81 (2023)
- Angélique Raley, Lior Huli, Steven Grzeskowiak, Katie Lutker-Lee, Alexandra Krawicz, Yannick Feurprier, Eric Liu, Kanzo Kato, Kathleen Nafus, Arnaud Dauendorffer, Nayoung Bae, Josh LaRose, Andrew Metz, Dave Hetzer, Masanobu Honda, Tetsuya Nishizuka, Akiteru Ko, Soichiro Okada, Yasuyuki Ido, Tomoya Onitsuka, Shinichiro Kawakami, Seiji Fujimoto, Satoru Shimura, Cong Que Dinh, Makoto Muramatsu, Peter Biolsi, Hiromasa Mochiki, Seiji Nagahara, "Outlook for high-NA EUV patterning: a holistic patterning approach to address upcoming challenges", Proc. SPIE12056, Advanced Etch Technology and Process Integration for Nanopatterning XI; 120560A (2022).

